Unpredicted Severe Toxicity after 5-Fluorouracil Treatment due to Dihydropyrimidine Dehydrogenase Deficiency
نویسندگان
چکیده
Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5-FU). Thus, patients with a DPD deficiency are at risk of developing severe 5-FU-associated toxicity. A 37-year-old female with gastric cancer underwent a curative operation, followed by adjuvant chemotherapy consisting of 5-FU and epirubicin. After the first cycle of chemotherapy, the patient manifested grade 2 mucositis and febrile neutropenia, and when her treatment was subsequently continued with doxifluridine she developed severe mucositis and febrile neutropenia. A PCR study revealed that her DPD mRNA level was lower than that in a control group. Thus, when considering the routine use of 5-FU for the treatment of cancer patients, an analysis of DPD activity or screening for DPD mutations is warranted in confined patients who experience unpredicted severe toxicity after initial 5-FU administration, even though DPD deficiency is a rare metabolic defect.
منابع مشابه
Safe administration of irinotecan, oxaliplatin and raltitrexed in a DPD-deficient patient with metastatic colon cancer.
Dihydropyrimidine dehydrogenase deficiency is diagnosed more frequently and is now generally accepted as a potentially life-threatening condition. It predisposes patients receiving treatment with fluoropyrimidines such as 5-fluorouracil (5-FU) to severe and, in case of complete dihydropyrimidine dehydrogenase deficiency, often fatal toxicity. A patient who had severe side effects following stan...
متن کاملFamilial Deficiency of Dihydropyrimidine Dehydrogenase
Severe neurotoxicity due to 5-fluorouracil (FUra) has previously been described in a patient with familial pyrimidinemia. We now report the biochemical basis for both the pyrimidinemia and neurotoxicity in a patient we have recently studied. After administration of a "test" dose of FUra (25 mg/m2, 600 gCi 16-3HJFUra by intravenous bolus) to a patient who had previously developed neurotoxicity a...
متن کاملIncreased risk of grade IV neutropenia after administration of 5-fluorouracil due to a dihydropyrimidine dehydrogenase deficiency: high prevalence of the IVS14+1g>a mutation.
Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-fluorouracil (5-FU), and it is suggested that patients with a partial deficiency of this enzyme are at risk of developing severe 5-FU-associated toxicity. We evaluated the importance of DPD deficiency, gender and the presence of the IVS14+1G>A mutation in the etiology of 5-FU toxicity. In 61% of...
متن کاملIdentification of novel mutations in the dihydropyrimidine dehydrogenase gene in a Japanese patient with 5-fluorouracil toxicity.
5-Fluorouracil (5-FU) is used widely in the treatment of several common neoplasms. Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the catabolism of 5-FU. Several recent studies have described a pharmacogenetic disorder in which cancer patients with decreased DPD activity develop life-threatening toxicity following exposure to 5-FU. We reported recently the firs...
متن کامل5-Fluorouracil toxicity and dihydropyrimidine dehydrogenase enzyme: implications for practice.
5-fluorouracil (5-FU) is a fluorinated pyrimidine analog, which is commonly used in combination chemotherapy for treating solid tumors. Dihydropyrimidine dehydrogenase plays an important role in catabolism and clearance of 5-FU. Any alteration in that sequence of enzymatic activity can lead to toxicity and even death in some patients. The most common loss of a functional allele of the dihydropy...
متن کامل